
CS522 - Option Pricing: Building the Lattice (2)
Last time we have shown how the appropriate choices for U and D lead to the emer-

gence (in the limit) of the normal distribution of stock price returns, and of the log-normal
distribution of stock prices. The parameters � and �2 represent the expected return of
the stock price and the variance of the stock price return per unit of time.
We continue our examination of the multiperiod binomial model. We assume that the

initial state occurs at time 0, the �nal states occur at time T , and that we divide the
interval [0; T ] into n equal intervals of length � = T

n
.

In our previous discussion we have selected the probability p to be equal to 1
2
. We

know, of course, that the true probabilities are not equal to 1
2
; more we know that the

probabilities that count are the equivalent martingale probabilities q.
Let us remember the de�nition of q:1

q =
Ser� � Sd
Su � Sd

=
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=
er� �D
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Last time we have chosen particular forms for U and D, as given below:

U = exp(��+ �
p
�)

D = exp(��� �
p
�)

From these de�nitions, we obtain the following expression for q:

q =
er� �D
U �D

=
exp((r � �)� + �

p
�)� 1

exp(2�
p
�)� 1

We can develop a more intuitive understanding for the properties of q if we determine
a series expansion of q as a sum of powers of �. We could do this "by hand," of course,
but since we are in a course that also covers tools, we will now rely on Mathematica to
help us out:

In[1]:=g[Delta_]:=(Exp[(r-mu)*Delta+sigma*Sqrt[Delta]]-1)
/(Exp[2*sigma*Sqrt[Delta]]-1)

In[2]:=Series[g[d],{d, 0, 1}]//OutputForm

We show (one possible form of) the trivial Mathematica program that gives us the
series expansion of q. The output above can be rewritten as follows:

1Remember that when we introduced the de�nition of q, we have used a one-period model with time
starting at 0, and ending at time t. Now we are in the context of the multiperiod model, when the length
of the time interval associated with the individual steps is �:
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Figure 1: One-period binomial model with equivalent [martingale] probabilities.

Figure 2: Screen capture of Mathematica output showing the series for q.
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Retaining just the �rst two terms, we get the following approximation for q:

q � 1

2

�
1 +

p
�

�
r � �
�

� 1
2
�

��
We note that when �! 0 (or, equivalently, when n!1), q becomes equal to 1

2
.

Consider again the de�nitions of U and D given above. Let us introduce a binomial
variable Yn, whose value is equal to the number of "up" states that a certain stock price
evolution "encounters" from time 0 to time T . The probability of an "up" state in the
next interval � is equal to q. We then get

rT = �T + �(2Yn � n)
r
T

n

S(T ) = S(0) exp

"
�T + �(2Yn � n)

r
T

n

#

Important note: Except for replacing variable Xn with Yn, the expressions above
are identical to those that we have derived in the preceding lecture. There is a crucial
di¤erence, however: while both Xn and Yn are binomial, the probability of the "up" state
is 1

2
in the �rst case, and q in the second.
We can easily compute the expectation and the variance of Yn:

E[Yn] = nq

V ar[Yn] = nq(1� q)

We rewrite the expression for the return over [0; T ] to emphasize the return and vari-

3



ance of Yn:
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It is clear that limn!1
p
q(1� q) = 1

2
. Given that

2
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we can now further rewrite rT :
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p
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By the Central Limit Theorem, the quantity Yn�nqp
nq(1�q)

converges to N(0; 1). In the

limit, we thus get that stock price returns on the interval [0; T ] are normally distributed,
and that

E[rT ] =

�
r � 1

2
�2
�
T

V ar[rT ] = �2T

Thus in the limit, when n ! 1 (i.e. � ! 0) the evolution of the stock price is still
normal, but with a mean equal to

�
r � 1

2
�2
�
T , and the same variance as before. The fact

that the variance did not change is a remarkable fact with profound implications.
Using the notation N(0; 1) to denote a normally distributed random variable with

mean 0 and variance 1, in the limit n!1 we can now write

rT =

�
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2
�2
�
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p
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�
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At this point, it is useful to recall that limn!1 q =
1
2
.

Remember the de�nitions of U and D?

U = exp(��+ �
p
�)

D = exp(��� �
p
�)

Here � is the expected return per unit of time of the stock price. When using the
equivalent probabilities q, we have that � = r � 1

2
�2. We thus must have factors U and

D de�ned as follows:

U = exp

��
r � 1

2
�2
�
�+ �

p
�
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2
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p
�

�
We then get the following value for q:

q =
exp

�
1
2
�2�+ �

p
�
�
� 1

exp(2�
p
�)� 1

0.1 Estimating Model Parameters

Assume that the length of the interval of interest, T , is given. Further, assume that we
have already chosen the number of equal-length subintervals into which we want to divide
interval [0; T ] (i.e. we already chose n and �). In order to simulate the evolution of the
stock price all we need to do is to determine the value of �, and that of r.
Rate r might be directly observable, or - more frequently - must be inferred from the

prices of various traded instruments. For our purposes, we will assume that r is equal to
the continuously compoundend yield of the Treasury whose leftover maturity is closest
to T . Of course, this approach has its drawbacks, as the price of the respective Treasury
might be distorted signi�cantly by some of the e¤ects we have discussed previously, most
likely by liquidity e¤ects due to the possible o¤-the-run status of the respective instru-
ment. Ideally, one would like to develop a more complex theory that incorporates the
distorting e¤ects before infering the value of r from the market price and the other rele-
vant characteristics of the respective Treasury. On the positive side, however, it is known
that r has a relatively mild e¤ect on the value of options, so its very precise determination
is not indispensable.
A more interesting problem is posed by parameter �, the volatility of the underlying

stock. In principle, one could compute this volatility from the data series of past stock
prices (i.e. historical stock prices). This issues has been studied thoroughly, and it has
been concluded that historical volatilities are not very useful in valuing options on stock.
Rather than trying to determine the value of � from historical data, we can assume the

price of the traded options to be correct, and we can infer what is the implied volatility
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Figure 3: The volatility surface captures the dependence of the implied volatility on the
time to expiration and the strike price (moneyness).

that corresponds to the respective options. For a given stock, the implied volatility should
depend neither on the strike price of the underlying options, nor on the expiration date of
the options; it should be constant. Such constancy of the implied volatility is not observed
in practice.
We can represent the dependence of the implied volatility on the strike price and

expiration date using a graph like the one in �gure 3. As this �gure shows, the strike
price is often represented in relative terms versus the current stock price. The moneyness
of the option is de�ned as the ratio K

S
, where K is the strike price of the option and S is

the current price of the underlying stock2 is S.
The intersection between the volatility surface and a plane perpendicular to the mon-

eyness axis is a curve that shows the term structure of the implied volatility (i.e. the
volatility�s dependence on the expiration date, for a given moneyness value). The in-
tersection of the volatility surface and a plane perpendicular to the time axis shows the
dependence of the volatility on the moneyness of the respective option. These curves have
characteristic shapes that bear individualized names; two of these are "smile" and "skew"
(see �gure 4). Traders often recognize, and trade based on more sophisticated patterns.
Due to the discrete nature of the strike prices and the expiration date the volatility

2Or commodity, as a matter of fact.
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Figure 4: Smiles and skews are two typical patterns exhibited by the implied volatility of
options having the same expiration date, by various strike prices.
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surface can only be sampled in a relatively small number of discrete points. If we want
to actually build a representation of the volatility surface, then we need to interpolate
between the values we have sampled empirically. Spline approximations to the volatility
surface are particularly easy to construct.
Given a volatility surface, one can use it to price options whose values have not been

used in the determination of the surface. Assuming that the volatility surface does not
change signi�cantly from one trading day to the next one, one can also use the previous
day�s volatility surface to price the current day�s options. If large enough discrepancies
are noted,3 one can trade based on the relationship between the actual price and the
computed theoretical price.

3Small discrepancies can not be exploited due to transaction costs. Also, since models are simpli�ed
representations of the underlying reality, the model�s predictions are likely to be slightly o¤ w.r.t. the
true underlying value of the option. Price discrepancies are due to model misspeci�cation or imprecise
parameter estimation.
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